If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2+13t+4=0
a = 3; b = 13; c = +4;
Δ = b2-4ac
Δ = 132-4·3·4
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-11}{2*3}=\frac{-24}{6} =-4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+11}{2*3}=\frac{-2}{6} =-1/3 $
| 3.5(3y-8)=-91 | | -2x+6=11 | | 100−(100−x)= | | 4/5x+10=-2 | | 2x/7-7/8=1/56 | | 5(x+2)=(7x-3) | | 4x/7-7/8=11/56 | | 3(2m-9+6m=3m+29-7m | | 9-y÷3=5 | | 5x/3-7=18 | | 23+1y=1y+25 | | N+6-2n=18+n-12+8 | | 5+20x=x | | -7(x+4)-10=13+5 | | 12n+3=5n | | -8k+1-4k=6-11k | | 13(17-x)=15(6x+1 | | 25-4w=9 | | Y=4/289(x-17)^2+10 | | -8k+1-4k=6-11k-86-4k | | 5(6-3x)=3(x+6)+6 | | 5y=2=3y+13 | | 5x+25(5-x)=65 | | X+(X+3)+(2x+1)=2+5x | | 4a-6=10*3 | | 5y+2=34+13 | | 4a-6=10×3 | | 10+6v=-10+10 | | t=-16t^2+50t+700 | | 5g+60=g | | 2-3a=11=}3a-2=11 | | 9n-8=n-12+6n |